

Welcome to EnergyPlus Python Transition’s documentation!

EnergyPlus Python Transition is a remake of the Fortran-based EnergyPlus file transition tool. The purpose of this
tool is to transition an EnergyPlus input file from one version to the latest version. Because the input forms change
between EnergyPlus versions so dramatically, having a tool like this is a mandatory piece of the EnergyPlus workflow.

The previous version, in Fortran, was difficult to maintain, as fewer and fewer Fortran developers remain. In addition,
with the possibility of future input syntax changes (JSON), a new version transition tool was desired. This version,
written in Python, is more modular in nature, with almost the entire code base written independent of any specific
version of EnergyPlus, and only the rules themselves plus 2 other lines needing to be modified for adding another
version. The rules themselves are simply derived classes in Python that give clear guidance on writing new rules.

Installation:

Each tagged release of the software is posted to PyPi [https://pypi.python.org/pypi/eptransition/]. With this in place, installation of the library into a given
Python installation is easy using pip:

pip install eptransition

Once this is installed, it will copy the library into Python’s appropriate package folder, and also create an executable
link to the main transition function, when possible, into the PATH, so that the eptransition script can be called
directly from the command line. Usage of these two modes are described below.

Usage from Command Line:

Once installed, in order to execute the program from the command line, simply call the executable link created during
installation and pass in the input file(s) to transition:

eptransition /path/to/idf /path/to/another/idf

Executing this command line will cause the tool to read the input file(s) first to find the start
version for each transition process. The tool then checks whether this version is available and if so, reads appropriate
dictionary files for the start/end version, processes the IDF, executes all transition rules, and writes out a
transitioned input file.

Usage from Library:

Once installed, using from existing Python code is a simple matter. Simply create a new Python script, and start by
importing the library:

import eptransition

With the library imported, one can access all the underlying model structure, although the most likely usage will be
to programmatically transition files. To do this, one can access the manager function directly:

from eptransition.manager import TransitionManager
for idf in ['/path/to/idf', 'path/to/another/idf']:
 tm = TransitionManager("/path/to/idf")
 try:
 tm.perform_transition()
 except Exception as e:
 print(e)

This is equivalent to the command line call above.

Class Structure:

	Transition Module Documentation

	Manager Class Documentation

	Exceptions Class Documentation

	Versions Module Documentation

	IDD Object Module Documentation

	IDD Processor Module Documentation

	IDF Object Module Documentation

	IDF Processor Module Documentation

	Base Transition Rules Class Documentation

	Generic Version Rule Class Documentation

Indexes and tables

	Index

	Module Index

	Search Page

Transition Module Documentation

	
eptransition.transition.main(args=None)

	This is the highest level driving function for the transition process. This interprets either sys.argv directly,
or a list of arguments that mimic sys.argv. (So that sys.argv can be passed in directly from other wrappers).
This function is called from the command line via the pip installation.

	Parameters:	args – An optional array of arguments, mimicking sys.argv. As such, item 0 must be a dummy program name,
followed by real arguments. If this is not passed in, sys.argv is assumed.

	Returns:	0 on success, 1 for failure

	Raises:	Exception – If the –raise flag is used, it will raise the underlying Exception at the first failure

Manager Class Documentation

	
class eptransition.manager.TransitionManager(original_input_file)

	Bases: object

This class is the main manager for performing transition of an input file to the latest version.

Developer note: This class raises many exceptions, so logging.exception is handled at the level of the code
calling these functions within a try/except block. These functions do logging, but only the info/debug level.

	Parameters:	original_input_file (str) – Full path to the original idf to transition

	
perform_transition()

	This function manages the transition from one version to another by opening, validating, and writing files

	Returns:	Final transitioned idf structure; raises exception for failures

	Raises:	
	FileAccessException – if a specified file does not access

	FileTypeException – if a specified file type does not match the expected condition

	ManagerProcessingException – if there is a problem processing the contents of the files

	
rvi_mvi_replace(original_file_path, new_file_path, output_rule)

	

Exceptions Class Documentation

	
exception eptransition.exceptions.FileAccessException(file_path, problem_type, file_nickname, message=None)

	Bases: exceptions.Exception

This exception occurs when the transition tool encounters a problem accessing a prescribed input or output file.

	Parameters:	
	file_path (str) – The file path which is causing the issue

	problem_type (str) – The type of problem occurring, from the constants defined in this class

	file_nickname (str) – The nickname of the file, from the constants defined in this class

	message (str) – An optional additional message to write out

	
CANNOT_FIND_FILE = 'cannot find file'

	

	
CANNOT_READ_FILE = 'cannot read file'

	

	
CANNOT_WRITE_TO_FILE = 'cannot write to file'

	

	
FILE_EXISTS_MUST_DELETE = 'file exists, must delete'

	

	
ORIGINAL_DICT_FILE = 'original dictionary file'

	

	
ORIGINAL_INPUT_FILE = 'original input file'

	

	
TRIED_BUT_CANNOT_DELETE_FILE = "tried to delete file, but couldn't"

	

	
UPDATED_DICT_FILE = 'updated dictionary file'

	

	
UPDATED_INPUT_FILE = 'updated input file'

	

	
exception eptransition.exceptions.FileTypeException(file_path, file_nickname, message)

	Bases: exceptions.Exception

This exception occurs when the prescribed file types do not match the expected conditions.

	
ORIGINAL_DICT_FILE = 'original dictionary file'

	

	
ORIGINAL_INPUT_FILE = 'original input file'

	

	
UPDATED_DICT_FILE = 'updated dictionary file'

	

	
UPDATED_INPUT_FILE = 'updated input file'

	

	
exception eptransition.exceptions.ManagerProcessingException(msg, issues=None)

	Bases: exceptions.Exception

This exception occurs when the transition tool encounters an unexpected issue when doing the transition.

	
exception eptransition.exceptions.ProcessingException(message, line_index=None, object_name='', field_name='')

	Bases: exceptions.Exception

This exception occurs when an unexpected error occurs during the processing of an input file.

	
exception eptransition.exceptions.UnimplementedMethodException(class_name, method_name)

	Bases: exceptions.Exception

This exception occurs when a call is made to a function that should be implemented in a derived class
but is not, so the base class function is called. This is a developer issue.

	Parameters:	
	class_name (str) – The name of the base class where the virtual function is defined

	method_name (str) – The method name which should be overridden in the derived class

Versions Module Documentation

	
class eptransition.versions.versions.SingleTransition(start_version, end_version, transitions, outputs, global_swap)

	Bases: object

Internal version information class

	Parameters:	
	start_version (float) – The major.minor floating point version identifier for the start version of this
transition

	end_version (float) – The major.minor floating point version identifier for the end version of this transition

	transitions ([TransitionRule]) – A list of class names that derive from TransitionRule as implemented for this
version

	outputs (OutputVariableTransitionRule_or_None) – Name of a class that derives from OutputVariableTransitionRule,
as implemented for this version

	global_swap (dict_or_None) – A dictionary of string:string that are used to globally search and replace within
the idf prior to actual transition

	Raises:	ManagerProcessingException – for any invalid inputs

	
class eptransition.versions.versions.TypeEnum

	Bases: object

Simple enumeration style class laying out the possible file types available

	
IDF = 'idf'

	

	
JSON = 'json'

	

IDD Object Module Documentation

	
class eptransition.idd.objects.IDDField(an_index)

	A simple class that defines a single field for an IDD object. Relevant members are listed here:

	Variables:	
	field_an_index (str) – Main identifier for this field

	meta_data (dict(str,[str])) – A dictionary, where each key is a string metadata type, such as “note”, and each
value is a list of strings for each entry in the metadata of the key type. So if
the field has 3 note lines, the dictionary value for key “note” would be a 3
element list, holding the 3 note lines.

	field_name (str) – A convenience variable holding the field name, if it is found in the metadata

Constructor parameters:

	Parameters:	an_index (str) – The Ai or Ni descriptor for this field in the IDD, where i is an integer 1-...

	
class eptransition.idd.objects.IDDGroup(name)

	A simple class that defines a single IDD group. An IDD group is simply a container for IDD objects.
Relevant members are listed here:

	Variables:	
	name (str) – IDD Type, or name, of this group

	objects (list(IDDObject)) – A list of all objects found in the IDD within this group.

Constructor parameters:

	Parameters:	name (str) – The group’s name

	
class eptransition.idd.objects.IDDObject(name)

	A simple class that defines a single IDD object. Relevant members are listed here:

	Variables:	
	name (str) – IDD Type, or name, of this object

	meta_data (dict(str,[str])) – A dictionary, where each key is a string metadata type, such as “memo”, and each
value is a list of strings for each entry in the metadata of the key type. So if
the object has 3 memo lines, the dictionary value for key “memo” would be a 3
element list, holding the 3 memo lines.

	fields (list(IDDField)) – A list of IDDField instances in order as read from the IDD

Constructor parameters:

	Parameters:	name (str) – The object’s type, or name

	
class eptransition.idd.objects.IDDStructure(file_path)

	An IDD structure representation. This includes containing all the IDD objects (either inside groups or as
standalone “single line objects”), as well as meta data such as the version ID for
this IDD, and finally providing worker functions for accessing the IDD data

Relevant “public” members are listed here:

	Variables:	
	file_path (str) – The path given when instantiating this IDD, not necessarily an actual path

	version_float (float) – The floating point representation of the version of this IDD (for 8.6.0 it is 8.6)

	build_string (str) – The abbreviated git SHA used when generating this IDD

	single_line_objects ([str]) – A list of strings, each representing a raw, single-token, name-only IDD object

	groups (list(IDDGroup)) – A list of all groups found in the IDD, each of which will contain IDD objects

Constructor parameters:

	Parameters:	file_path (str) – A file path for this IDD; not necessarily a valid path as it is never used, just available
for bookkeeping purposes.

	
get_object_by_type(type_to_get)

	Given a type name, this returns the IDD object instance, or a single string if it is a single-line object

	Parameters:	type_to_get – The name of the object to get, case-insensitive as it is compared insensitively inside

	Returns:	If the object is a single-line object, simply the name; if the object is a full IDDObject instance,
that instance is returned. If a match is not found, this returns None.

	
get_objects_with_meta_data(meta_data)

	Given an object-level metadata string (required-object, e.g.), this returns objects that contain that metadata

	Parameters:	meta_data – An object-level metadata string, such as required-object

	Returns:	A list of IDDObjects that contain this metadata

IDD Processor Module Documentation

	
class eptransition.idd.processor.CurrentReadType

	Internal class containing constants for the different states of the actual IDD Processor engine

	
EncounteredComment_ReadToCR = 0

	

	
LookingForFieldMetaDataOrNextField = 11

	

	
LookingForFieldMetaDataOrNextObject = 10

	

	
LookingForObjectMetaDataOrNextField = 4

	

	
ReadAnything = 1

	

	
ReadingFieldANValue = 7

	

	
ReadingFieldMetaData = 8

	

	
ReadingFieldMetaDataOrNextANValue = 9

	

	
ReadingGroupDeclaration = 2

	

	
ReadingObjectMetaData = 5

	

	
ReadingObjectMetaDataContents = 6

	

	
ReadingObjectName = 3

	

	
class eptransition.idd.processor.IDDProcessor

	The core IDD Processor class. Given an IDD via stream or path, this class has workers to robustly process the IDD
into a rich IDDStructure instance.

The constructor takes no arguments but sets up instance variables. Relevant “public” members are listed here:

	Variables:	
	idd (IDDStructure) – The resulting IDDStructure instance after processing the IDD file/stream

	file_path (str) – A file path for this IDD, although it may be just a simple descriptor

	
peek_one_char()

	Internal worker function that reads a single character from the internal IDD stream but resets the stream to
the former position

	Returns:	A single character, the one immediately following the cursor, or None if it can’t peek ahead.

	
process_file()

	Internal worker function that reads the IDD stream, whether it was constructed from a file path, stream or
string. This state machine worker moves character by character reading tokens and processing them into
a meaningful IDD structure.

	Returns:	An IDD structure describing the IDD contents

	Raises:	ProcessingException – for any erroneous conditions encountered during processing

	
process_file_given_file_path(file_path)

	This worker allows processing of an IDD file at a specific path on disk.

	Parameters:	file_path – The path to an IDD file on disk.

	Returns:	An IDDStructure instance created from processing the IDD file

	Raises:	ProcessingException – if the specified file does not exist

	
process_file_via_stream(idd_file_stream)

	This worker allows processing of an IDD snippet via stream. Most useful for unit testing, but possibly for
other situations.

	Parameters:	idd_file_stream (file-like-object) – An IDD snippet that responds to typical file-like commands such as
read(). A common object would be the StringIO object.

	Returns:	An IDDStructure instance created from processing the IDD snippet

	
process_file_via_string(idd_string)

	This worker allows processing of an IDD snippet string. Most useful for unit testing, but possibly for
other situations.

	Parameters:	idd_string (str) – An IDD snippet string

	Returns:	An IDDStructure instance created from processing the IDD string

	
read_one_char()

	Internal worker function that reads a single character from the internal IDD stream, advancing the cursor.

	Returns:	A single character, the one immediately following the cursor, or None if it can’t read.

IDF Object Module Documentation

	
class eptransition.idf.objects.IDFObject(tokens, comment_blob=False)

	Bases: object

This class defines a single IDF object. An IDF object is either a comma/semicolon delimited list of actual
object data, or a block of line delimited comments. Blocks of comment lines are treated as IDF objects so they can
be intelligently written back out to a new IDF file after transition in the same location.

Relevant members are listed here:

	Variables:	
	object_name (str) – IDD Type, or name, of this object

	fields ([str]) – A list of strings, one per field, found for this object in the IDF file

Constructor parameters:

	Parameters:	
	tokens ([str]) – A list of tokens defining this idf object, the first token in the list is the object type.

	comment_blob (bool) – A signal that this list is comment data, and not an actual IDF object; default is False.
indicating it is meaningful IDF data.

	
object_string(idd_object=None)

	This function creates an intelligently formed IDF object. If the current instance is comment data, it simply
writes the comment block out, line delimited, otherwise it writes out proper IDF syntax. If the matching IDD
object is passed in as an argument, the field names are matched from that to create a properly commented
IDF object.

	Parameters:	idd_object (IDDObject) – The IDDObject structure that matches this IDFObject

	Returns:	A string representation of the IDF object or comment block

	
validate(idd_object)

	This function validates the current IDF object instance against standard IDD field tags such as minimum and
maximum, etc.

	Parameters:	idd_object (IDDObject) – The IDDObject structure that matches this IDFObject

	Returns:	A list of ValidationIssue instances, each describing an issue encountered

	
write_object(file_object)

	This function simply writes out the idf string to a file object

	Parameters:	file_object – A file-type object that responds to a write command

	Returns:	None

	
class eptransition.idf.objects.IDFStructure(file_path)

	Bases: object

An IDF structure representation. This includes containing all the IDF objects in the file, as well as meta data
such as the version ID for this IDD, and finally providing worker functions for accessing the IDD data

Relevant “public” members are listed here:

	Variables:	
	file_path (str) – The path given when instantiating this IDF, not necessarily an actual path

	version_float (float) – The floating point representation of the version of this IDD (for 8.6.0 it is 8.6)

	objects ([IDFObject]) – A list of all IDF objects found in the IDF

Constructor parameters:

	Parameters:	file_path (str) – A file path for this IDF; not necessarily a valid path as it is never used, just available
for bookkeeping purposes.

	
get_idf_objects_by_type(type_to_get)

	This function returns all objects of a given type found in this IDF structure instance

	Parameters:	type_to_get (str) – A case-insensitive object type to retrieve

	Returns:	A list of all objects of the given type

	
global_swap(dict_of_swaps)

	

	
validate(idd_structure)

	This function validates the current IDF structure instance against standard IDD object tags such as required
and unique objects.

	Parameters:	idd_structure – An IDDStructure instance representing an entire IDD file

	Returns:	A list of ValidationIssue instances, each describing an issue encountered

	
whole_idf_string(idd_structure=None)

	This function returns a string representation of the entire IDF contents. If the idd structure argument is
passed in, it is passed along to object worker functions in order to generate an intelligent representation.

	Parameters:	idd_structure (IDDStructure) – An optional IDDStructure instance representing an entire IDD file

	Returns:	A string of the entire IDF contents, ready to write to a file

	
write_idf(idf_path, idd_structure=None)

	This function writes the entire IDF contents to a file. If the idd structure argument is
passed in, it is passed along to object worker functions in order to generate an intelligent representation.

	Parameters:	
	idf_path (str) – The path to the file to write

	idd_structure (IDDStructure) – An optional IDDStructure instance representing an entire IDD file

	Returns:	None

	
class eptransition.idf.objects.ValidationIssue(object_name, severity, message, field_name=None)

	This class stores information about any issue that occurred when reading an IDF file.

	Parameters:	
	object_name (str) – The object type that was being validated when this issue arose

	severity (int) – The severity of this issue, from the class constants

	message (str) – A descriptive message for this issue

	field_name (str) – The field name that was being validated when this issue arose, if available.

	
ERROR = 2

	

	
INFORMATION = 0

	

	
WARNING = 1

	

	
static severity_string(severity_integer)

	Returns a string version of the severity of this issue

	Parameters:	severity_integer (int) – One of the constants defined in this class (INFORMATION, etc.)

	Returns:	A string representation of the severity

IDF Processor Module Documentation

	
class eptransition.idf.processor.IDFProcessor

	The core IDF Processor class. Given an IDF via stream or path, this class has workers to robustly process the IDF
into a rich IDFStructure instance.

The constructor takes no arguments but sets up instance variables. Relevant “public” members are listed here:

	Variables:	
	idf (IDFStructure) – The resulting IDFStructure instance after processing the IDF file/stream

	file_path (str) – A file path for this IDF, although it may be just a simple descriptor

	
process_file()

	Internal worker function that reads the IDF stream, whether it was constructed from a file path, stream or
string. This processor then processes the file line by line looking for IDF objects and comment blocks, and
parsing them into a meaningful structure

	Returns:	An IDF structure describing the IDF contents

	Raises:	ProcessingException – for any issues encountered during the processing of the idf

	
process_file_given_file_path(file_path)

	This worker allows processing of an IDF file at a specific path on disk.

	Parameters:	file_path – The path to an IDF file on disk.

	Returns:	An IDFStructure instance created from processing the IDF file

	Raises:	ProcessingException – if the specified file does not exist

	
process_file_via_stream(idf_file_stream)

	This worker allows processing of an IDF snippet via stream. Most useful for unit testing, but possibly for
other situations.

	Parameters:	idf_file_stream (file-like-object) – An IDF snippet that responds to typical file-like commands such as
read(). A common object would be the StringIO object.

	Returns:	An IDFStructure instance created from processing the IDF snippet

	
process_file_via_string(idf_string)

	This worker allows processing of an IDF snippet string. Most useful for unit testing, but possibly for
other situations.

	Parameters:	idf_string (str) – An IDF snippet string

	Returns:	An IDFStructure instance created from processing the IDF string

Base Transition Rules Class Documentation

	
class eptransition.rules.base_rule.ObjectTypeAndName(object_type, object_name)

	This is a simple class for defining an object type/name combination

	Parameters:	
	object_type (str) – The object type

	object_name (str) – The name of the object (usually field[0]

	
class eptransition.rules.base_rule.OutputVariableTransitionRule

	This class is a must-override base class for defining transition rules for output variable objects
These objects are treated somewhat specially by the tool because a small change can affect so
many objects, and it would be unwise to expect each version to include so much repeated code.

The structure of the output objects here is based on 8.5/8.6. In the future, if the objects didn’t change much,
it would make most sense to just keep using this class and making small tweaks as needed. If more major
changes occur, it would be best to create a new base class to move forward.

The fields for each object are described next

	OV: Output:Variable

	Key Value

	Variable Name * * * *

	Reporting Frequency

	Schedule Name

	OM: Output:Meter, OMM: Output:Meter:MeterFileOnly

	Name * * * *

	Reporting Frequency

	OMC: Output:Meter:Cumulative, OMCM: Output:Meter:Cumulative:MeterFileOnly

	Name * * * *

	Reporting Frequency

	OTT: Output:Table:TimeBins

	Key Value

	Variable Name * * * *

	Interval Start

	Interval Size

	Interval Count

	Schedule Name

	Variable Type

	FMUI: ExternalInterface:FunctionalMockupUnitImport:From:Variable

	EnergyPlus Key Value

	EnergyPlus Variable Name * * * *

	FMU File Name

	FMU Instance Name

	FMU Variable Name

	FMUE: ExternalInterface:FunctionalMockupUnitExport:From:Variable

	EnergyPlus Key Value

	EnergyPlus Variable Name * * * *

	FMU Variable Name

	EMS: EnergyManagementSystem:Sensor

	Name

	Output:Variable or Output:Meter Key Name

	Output:Variable or Output:Meter Name * * * *

	OTM: Output:Table:Monthly

	Name

	Digits after Decimal

	Variable or Meter X Name * * * *

	Variable or Meter X Aggregation Type

... repeating with variable names for each 2, 4, 6, 8, ...

	OTA: Output:Table:Annual

	Name

	Filter

	Schedule Name

	Variable or Meter X Name * * * *

	Variable or Meter X Aggregation Type

... repeating with variable names for each 3, 5, 7, 9, ...

	MC: Meter:Custom

	Name

	Fuel Type

	Key Name X

	Output Variable or Meter Name X * * * *

... repeating with variable names for each 3, 5, 7, 9, ...

	MCD: Meter:CustomDecrement

	Name

	Fuel Type

	Source Meter Name ????

	Key Name X

	Output Variable or Meter Name X

... repeating with variable names for each 4, 6, 8, 10, ...

	
EMS = 'ENERGYMANAGEMENTSYSTEM:SENSOR'

	

	
FMUE = 'EXTERNALINTERFACE:FUNCTIONALMOCKUPUNITEXPORT:FROM:VARIABLE'

	

	
FMUI = 'EXTERNALINTERFACE:FUNCTIONALMOCKUPUNITIMPORT:FROM:VARIABLE'

	

	
MC = 'METER:CUSTOM'

	

	
MCD = 'METER:CUSTOMDECREMENT'

	

	
OM = 'OUTPUT:METER'

	

	
OMC = 'OUTPUT:METER:CUMULATIVE'

	

	
OMCM = 'OUTPUT:METER:CUMULATIVE:METERFILEONLY'

	

	
OMM = 'OUTPUT:METER:METERFILEONLY'

	

	
OTA = 'OUTPUT:TABLE:ANNUAL'

	

	
OTM = 'OUTPUT:TABLE:MONTHLY'

	

	
OTT = 'OUTPUT:TABLE:TIMEBINS'

	

	
OV = 'OUTPUT:VARIABLE'

	

	
complex_output_operation(full_object, dependent_objects)

	This method should be overridden in derived classes and should perform the complex operations to transition
the argument object passed in. The function should return a list because some complex operations may split the
initial object into multiple objects. The object passed in will have any simple name swaps already performed.

	Parameters:	
	full_object – The original object to be replaced.

	dependent_objects – A dictionary of dependent objects

	Returns:	A list of new IDFObject instances, typically just one though

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
get_complex_operation_types()

	This method should be overridden in the derived classes and return a list of object names that require more
complex transition operations than a simple variable name swap

	Returns:	A list of strings, each representing an object name that requires complex transition operations

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
get_dependent_object_names()

	This method can be overridden in derived classes if any of the output variable name changes depend on other
objects in the idf. Simply return a list of object names

	Returns:	A list of object names that output variable name changes are dependent upon

	
get_output_objects()

	This method should be overridden in derived classes and return a list of all output-related object types
in this version of EnergyPlus. A base version is available in the base class that can be used as a starter
and if an object name changes, the derived class can change that name as needed in the return array.

	Returns:	A list of strings, each representing an output object type name

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
get_simple_swaps()

	This method should be overridden in derived classes and return a dictionary where each key is the name of
an output variable, and the value of each key is the new variable name. This map is used when doing the
simple variable name swaps.

	Returns:	A dictionary of <old_variable_name, new_variable_name>

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
get_standard_indexes_from_object(object_name)

	This method should be overridden in derived classes and return a list of the zero-based field indexes that
include a variable name in the given object type. A base version is available in the base class that can be
used as a starter and if the structure of any object types changes, the derived class can change that one as
needed in the return list

	Parameters:	object_name – The name of the object being inspected

	Returns:	A list of zero-based indexes, each representing a field containing an output variable name

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
original_full_variable_type_list()

	

	
original_standard_indexes_from_object(object_name)

	This method returns the list of indexes where variable names are found. These are zero based indexes. This
method returns a base version that can be used by a derived class directly, modified, or used as a template
for future derived classes.

	Parameters:	object_name – The upper case name of the object currently being transitioned.

	Returns:	A list of zero-based indexes

	
simple_name_swap(variable_name)

	This method is a simple method that queries the must-override get_simple_swaps method in the derived class
and either returns a new variable name to swap in place of the original name, or returns None as a signal that
this original variable name does not need replacement

	Parameters:	variable_name – The original variable name to potentially be replaced

	Returns:	A new variable name, if a swap is to be performed, or None if not

	
transition(core_object, dependent_objects)

	This method can be implemented by derived classes if necessary, but should capture the entire transition
functionality just using the other required <must-override> methods in this class. This function first scans
all the variable names in the current locations, and renames as needed. Then this function checks if
this object type needs a complex transition, and if so, calls the appropriate derived method. This method then
returns a full IDFObject instance.

	Parameters:	
	core_object – The original object to be replaced

	dependent_objects – A dictionary of dependent objects

	Returns:	A list of new IDFObject instances, typically just one though

	
class eptransition.rules.base_rule.TransitionReturn(objects_to_write, objects_to_delete=None)

	This is a simple class for capturing the response from a transition call

	Parameters:	
	objects_to_write ([IDFObject]) – The list of IDFObject instances to be written as a result of this transition

	objects_to_delete ([ObjectTypeAndName]) – The list of idf object type/name combinations to be deleted as a
result of this transition

	
class eptransition.rules.base_rule.TransitionRule

	This class is a must-override base class for defining transition rules for idf objects

	
get_name_of_object_to_transition()

	This method should be overridden in derived classes and return a single name of an object that this rule handles
the transition for.

	Returns:	A string name of an object to transition

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
get_names_of_dependent_objects()

	This method should be overridden in derived classes and return a list of object names that the derived
transition implementation is dependent upon.

	Returns:	A list of string object names

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

	
transition(core_object, dependent_objects)

	This method is the core transition operation for this object.

	Parameters:	
	core_object – The original idf object to be transitioned

	dependent_objects – A dictionary of {object_name: [idf_object, ...]} containing the idf object data in the
original idf that have object names defined in this derived classes
get_names_of_dependent_objects method. Each key in this argument is a string
object name, and each value is a list of all the idf objects in the file of that type.

	Returns:	A list of new IDFObject instances, typically just one though

	Raises:	UnimplementedMethodException – Raised if this method is called on the base class itself

Generic Version Rule Class Documentation

	
class eptransition.rules.version_rule.VersionRule(end_version)

	Bases: eptransition.rules.base_rule.TransitionRule

This class implements, in a generic fashion, the transition rule for the Version object. By passing in the
identifier for the target version, the rules are set up so this doesn’t have to change for each version.

	Parameters:	end_version – The new value for the version object’s single field: Version ID

	
get_name_of_object_to_transition()

	

	
get_names_of_dependent_objects()

	

	
transition(core_object, dependent_objects)

	

Index

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to EnergyPlus Python Transition's documentation!

 		Transition Module Documentation

 		Manager Class Documentation

 		Exceptions Class Documentation

 		Versions Module Documentation

 		IDD Object Module Documentation

 		IDD Processor Module Documentation

 		IDF Object Module Documentation

 		IDF Processor Module Documentation

 		Base Transition Rules Class Documentation

 		Generic Version Rule Class Documentation

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

